The real nonnegative inverse eigenvalue problem is NP-hard
نویسندگان
چکیده
A list of complex numbers is realizable if it is the spectrum of a nonnegative matrix. In 1949 Sulěımanova posed the nonnegative inverse eigenvalue problem (NIEP): the problem of determining which lists of complex numbers are realizable. The version for reals of the NIEP (RNIEP) asks for realizable lists of real numbers. In the literature there are many sufficient conditions or criteria for lists of real numbers to be realizable. We will present an unified account of these criteria. Then we will see that the decision problem associated to the RNIEP is NP-hard and we will study the complexity for the decision problems associated to known criteria.
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملThe Real and the Symmetric Nonnegative Inverse Eigenvalue Problems Are Different
We show that there exist real numbers λ1, λ2, . . . , λn that occur as the eigenvalues of an entry-wise nonnegative n-by-n matrix but do not occur as the eigenvalues of a symmetric nonnegative n-by-n matrix. This solves a problem posed by Boyle and Handelman, Hershkowitz, and others. In the process, recent work by Boyle and Handelman that solves the nonnegative inverse eigenvalue problem by app...
متن کاملOn nonnegative realization of partitioned spectra
We consider partitioned lists of real numbers Λ = {λ1, λ2, . . . , λn}, and give efficient and constructive sufficient conditions for the existence of nonnegative and symmetric nonnegative matrices with spectrum Λ. Our results extend the ones given in [R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. Linear Algebra Appl., 416:844– 856, 2006....
متن کاملEla on Nonnegative
We consider partitioned lists of real numbers Λ = {λ1, λ2, . . . , λn}, and give efficient and constructive sufficient conditions for the existence of nonnegative and symmetric nonnegative matrices with spectrum Λ. Our results extend the ones given in [R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. Linear Algebra Appl., 416:844– 856, 2006....
متن کاملNumerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices
Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.00931 شماره
صفحات -
تاریخ انتشار 2016